C4orf41 and TTC-15 are mammalian TRAPP components with a role at an early stage in ER-to-Golgi trafficking

نویسندگان

  • P. James Scrivens
  • Baraa Noueihed
  • Nassim Shahrzad
  • Sokunthear Hul
  • Stephanie Brunet
  • Michael Sacher
چکیده

TRAPP is a multisubunit tethering complex implicated in multiple vesicle trafficking steps in Saccharomyces cerevisiae and conserved throughout eukarya, including humans. Here we confirm the role of TRAPPC2L as a stable component of mammalian TRAPP and report the identification of four novel components of the complex: C4orf41, TTC-15, KIAA1012, and Bet3L. Two of the components, KIAA1012 and Bet3L, are mammalian homologues of Trs85p and Bet3p, respectively. The remaining two novel TRAPP components, C4orf41 and TTC-15, have no homologues in S. cerevisiae. With this work, human homologues of all the S. cerevisiae TRAPP proteins, with the exception of the Saccharomycotina-specific subunit Trs65p, have now been reported. Through a multidisciplinary approach, we demonstrate that the novel proteins are bona fide components of human TRAPP and implicate C4orf41 and TTC-15 (which we call TRAPPC11 and TRAPPC12, respectively) in ER-to-Golgi trafficking at a very early stage. We further present a binary interaction map for all known mammalian TRAPP components and evidence that TRAPP oligomerizes. Our data are consistent with the absence of a TRAPP I-equivalent complex in mammalian cells, suggesting that the fundamental unit of mammalian TRAPP is distinct from that characterized in S. cerevisiae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mammalian Bet3 functions as a cytosolic factor participating in transport from the ER to the Golgi apparatus.

The TRAPP complex identified in yeast regulates vesicular transport in the early secretory pathway. Although some components of the TRAPP complex are structurally conserved in mammalian cells, the function of the mammalian components has not been examined. We describe our biochemical and functional analysis of mammalian Bet3, the most conserved component of the TRAPP complex. Bet3 mRNA is ubiqu...

متن کامل

Mutational Analysis of the Yeast TRAPP Subunit Trs20p Identifies Roles in Endocytic Recycling and Sporulation

Trs20p is a subunit of the evolutionarily conserved TRAPP (TRAnsport Protein Particle) complex that mediates various aspects of membrane trafficking. Three TRAPP complexes have been identified in yeast with roles in ER-to-Golgi trafficking, post-Golgi and endosomal-to-Golgi transport and in autophagy. The role of Trs20p, which is essential for viability and a component of all three complexes, a...

متن کامل

Mitotic transformation of TRAMM/TrappC12

Intracellular vesicle transport is a mechanism required for the proper targeting and secretion of proteins and lipids. The process comprises sorting, budding, movement, tethering and fusion of the vesicle with the target membrane resulting in delivery of its contents [1]. Transport protein particle (TRAPP) has been demonstrated to contribute to endoplasmic reticulum (ER)-to–Golgi, intra-Golgi a...

متن کامل

Trapp Stimulates Guanine Nucleotide Exchange on Ypt1p

TRAPP, a novel complex that resides on early Golgi, mediates the targeting of ER-to-Golgi vesicles to the Golgi apparatus. Previous studies have shown that YPT1, which encodes the small GTP-binding protein that regulates membrane traffic at this stage of the secretory pathway, interacts genetically with BET3 and BET5. Bet3p and Bet5p are 2 of the 10 identified subunits of TRAPP. Here we show th...

متن کامل

TRAPPing Rab18 in lipid droplets

F ar from being simple storage structures, lipid droplets (LDs) are highly dynamic organelles that are involved in several functions. Testifying to their dynamic nature, several membrane trafficking components are linked to LDs. These include ARF guanine nucleotide exchange factors (GEFs), COPI components, and several Rab GTPases. Despite the fact that almost 40 different Rab GTPases have been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2011